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Abstract—Effective risk reduction strategies can be derived 
mechanically given sufficient characterization of the risks 
present in the system and the effectiveness of available risk 
reduction techniques. Quantitative assessments of risks and 
risk reduction techniques are likely to be inaccurate. In this 
paper we describe sensitivity analysis experiments which we 
carried out to evaluate how inaccurate quantification of risk 
and risk reduction techniques affect the performance of 
mechanically derived risk reduction strategies. Our 
experiments show that mechanically derived risk reduction 
strategies are likely to produce significant improvements in 
risk reduction compared to a alternative risk reduction 
strategies, and arguably should be used as a matter of 
course, even when knowledge of risk and risk reduction 
techniques is very inaccurate.  
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1. INTRODUCTION 
Effective risk reduction strategies can be derived 
mechanically given sufficient characterization of the risks 
present in the system and the effectiveness of available risk 
reduction techniques.  

The Strategic Method [Port et al, 2005] is one technique for 
generating optimal risk reduction strategies, which most 
reduce risk exposure for a given budget. The input to the 
strategic method is a specification, for the risks and risk 
reduction techniques of interest, of the probability and cost 
of failure for each risk, both before and after application of 
each risk reduction technique, and the cost of applying each 
risk reduction technique. 

In this paper, we address an important question: can we 
reliably expect mechanically derived risk reduction 

strategies to be better than fixed or hand-selected risk 
reduction strategies, given that the quantitative assessment 
of risks and risk reduction techniques upon which 
mechanical derivation is based is likely to be inaccurate?  

We consider this question relative to two methods for 
deriving effective risk reduction strategies: the Strategic 
Method and the Defect Detection and Prevention (DDP) 
tool [Feather & Cornford, 2003]. We evaluate the efficacy 
of the Strategic Method as follows: 

1. How much more does the strategy computed by the 
Strategic Method reduce risk than a fixed strategy? 

2. How does the accuracy with which we can assess 
the risk reduction achievable by each technique 
affect the performance of the strategic method? 

3. How effectively does the strategic method tailor its 
recommendations to the specific levels of risk 
present in a project? 

We find that: 

1. The strategic method performs significantly better 
than a reasonable strategy which adopts techniques 
in order of cheapness, and than random strategies.  

2. The strategic method is effective even when there 
is large uncertainty on the risk reduction achievable 
by the available risk reduction methods.  

3. Strategies computed by the strategic method are 
effectively tailored to projects’ specific risk levels. 

4. Strategies computed by the Strategic Method are at 
least as good as those computed by a simulated 
annealing optimization method implemented in 
DDP. 
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2. THE STRATEGIC METHOD  

Any development activity and system operation involves 
risk. Risks are possible situations that can cause a system to 
fail to meet its goals. They range in impact from trivial to 
fatal and in likelihood from certain to improbable. Generally 
risks are either “identified” in that they arise from 
anticipated system errors and off-nominal conditions or 
“unidentified” where they do not.  Furthermore the impact 
of identified risks are either “known” where the expected 
loss-potential has been assessed or “unknown” where the 
loss-potential has not or cannot be assessed. Risks that are 
unidentified or have unknown impacts are sometimes 
loosely labeled as “risks due to uncertainty”. Risk 
considerations often focus on uncertainty since typically 
known risks are either addressed or accepted as within a 
“tolerable” level. A risk model describes risks and their 
impacts for a particular system.  

Risks are typically not static. Likelihoods and impacts 
change with a number of dynamic variables, e.g. time, cost, 
system state. As a consequence it is often desirable to 
consider risks with respect to a planned set of events such as 
assessment effort, system operation time, development 
investment, etc.  We call the representation of risks that 
change dynamically over planned activities a strategic risk 
model. We use the term “strategic” here because there is an 
implicit planned order of risk reduction activities – a 
strategy – that is expected to achieve a specified goal.  

We use as a basic measure of risk the risk exposure (RE), 
which is computed as the product of the probability of loss 
P(L) and size that loss S(L) summed over all sources of loss 
for a particular risk item. Total system risk exposure is the 
sum of individual risk exposures, total RE = ∑ P(Li )* S(Li), 
where Li  is the loss due to the ith risk. 

Related to the notion of RE is risk reduction leverage 
(RRL).  RRL is a way of gauging the effectiveness or 
desirability of a risk reduction technique. If RRCost stands 
for the cost of the activity that achieves the risk reduction, 
then the formula for RRL is: 

RRL = (REbefore - REafter) / RRCost  

It is often the case that a technique reduces only the 
likelihood of a risk and not its magnitude.  In this case, the 
RRL reduces to the cost-benefit (CB) ratio: 

CB = [Pbefore(L) – Pafter(L)]*S(L)/RRCost                               
=  ∆P(L)*S(L)/RRCost 

Since risk considerations are critical to the success or failure 
of a system, it is important that risks be investigated 
candidly and completely. A risk profile (or RE profile) is 
the evaluation of RE as a function of a monotonically 

increasing quantity such as elapsed time, cumulative effort, 
or cumulative cost.  

For example, Table 1 shows typical sets of risk and cost 
data provided for calculating the effectiveness of IV&V 
assessment techniques (see Appendix for descriptions of 
attributes and techniques used here): 

Attribute (i) A1 A2 A3 A4 A5 A6 A7 

Loss potential 
for Ai 100 90 90 80 60 30 50 

Pbefore(Ai)  6 5 20 15 20 5 20 

Attribute (i) A8 A9 A10 A11 A12 A13 A14 

Loss potential 
for Ai 20 10 10 60 10 90 60 

Pbefore(Ai)  10 10 10 30 20 50 40 

Table 1: Attributes and their Loss Potential and 
Probability (before mitigation) 
 
 
 
 
 

Cost to 
assess  
Ai w/ Tj A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 

T1 50 x 10 70 10 x x x x 50 5 x 10 x 

T2 100 x x 100 100 x x x x x x x x x 

T3 x x 80 80 80 x x x x x x x x x 

T4 100 90 x x 19 x x x x x x x x x 

T5 70 100 70 70 70 x x x x x x x x x 

T6 30 30 30 30 30 x x x x x x x x x 

T7 x x x x x 5 10 x 5 5 3 x 3 x 

T8 x x x x x 80 70 x 80 80 x x x x 

T9 x x x x x x 3 10 20 20 20 10 20 10 

T10 60 x x 60 50 40 50 50 50 40 40 20 40 20 

T11 60 x 90 60 60 x x x x 50 10 x 10 x 

T12 x x x x x 5 5 10 10 10 10 5 x x 

T13 30 x x 30 30 x x 30 x 30 5 x 30 x 

T14 100 x x 100 100 x x x x 100 5 x 100 x 

Table 2: Risk Assessment Techniques and the 
Costs of Assessing Them 
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Pafter(Ai) 
using Tj A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 

T1 4 x 15 12 15 x x x x 5 15 x 20 x 

T2 6 x x 13 15 x x x x x x x x x 

T3 x x 15 12 13 x x x x x x x x x 

T4 6 0 x x 19 x x x x x x x x x 

T5 6 2 2 13 18 x x x x x x x x x 

T6 6 2 5 13 19 x x x x x x x x x 

T7 x x x x x 2 15 x 8 10 30 x 30 x 

T8 x x x x x 1 10 x 7 9 x x x x 

T9 x x x x x x 10 4 6 8 25 20 30 30 

T10 6 x x 12 19 3 15 8 8 8 27 20 30 20 

T11 3 x 15 5 5 x x x x 5 5 x 5 x 

T12 x x x x x 3 18 9 10 10 30 20 x x 

T13 5 x x 12 15 x x 5 x 6 20 x 28 x 

T14 3 x x 3 5 x x x x 5 10 x 20 x 
"x" : technique can't be used for attribute 

Table 3: Probability of a Loss After Assessing with 
Technique Tj 
The data in Table 3 was generated by considering each 
system attribute Ai in Table 2 for S(Ai) in terms of the 
percentage of the project value that would result from an 
error in the system attribute and Pbefore(Ai) the 
corresponding probability (as a percentage) of such a loss 
occurring. Then if the attribute Ai is assessed with technique 
Tj the resulting Pafter(Ai) and the corresponding cost for 
performing this assessment. The cost is effort in hours 
used to perform the assessment of the attribute. A strategy is 
an ordered sequence of attribute-technique pairs < Ai , Tj >. 
Given this information, we can perform the following 
algorithm to calculate an optimal risk reduction strategy: 

Step 1: Identify the most significant system assessment 
attributes. Label them A1 ,…, An 

Step 2: Identify the most significant assessment 
techniques (e.g. product testimonials, prototyping, etc.) 
applicable to the project, available resources (e.g. staff 
skills, tools). Label them T1 ,…, Tn 

Step 3: Estimate the relative probabilities P(Ai) and 
size S(Ai) quantities for potential losses associated 
with attributes i=1,…,n before any assessment. RE(Ai) 
may be estimated directly, e.g. from historical data. 

Step 4: Estimate the cost C(Ai,Tj), size S(Ai,Tj), and 
probability P(Ai,Tj) after assessment of Ai with Tj  and 
the change in risk exposures ΔRE(Ai,Tj) = P(Ai)*S(Ai) 
 - S(Ai,Tj)* P(Ai,Tj)   

Step 5: Calculate the benefit matrix B(Ai,Tj) = 
ΔRE(Ai,Tj)  - C(Ai,Tj). For each Ai find the Tk where 
B(Ai,Tk)  is maximum. Set  ci = k. 

Step 6: Using ci as above, calculate the RRL list,  
RRL(Ai,Tci) = ΔRE(Ai,Tci) / C(Ai,Tci) for i =1,…,n. 
Let V(k) be the index where RRL(AV(k),TcV(k)) is the 
kth largest element in the RRL list. For example, V(1) 
corresponds to where RRL(Ai ,Tci) is maximum over 
all i, and T(n) is the minimum.  

Step 7: Graph the cumulative RE drop, RE(n) = REtotal 
- ∑ΔRE(AV(k), TcV(k)) versus cumulative effort C(n) = 
∑C(AV(k), TcV(k)) . 

The strategy dictates that one should perform <AV(k), TcV(k)> 
for k =1,2,3,… in this order until the cost outweighs the 
benefit (i.e. RRL(AV(k), TcV(k))  < 1) unless other specific 
risk reduction goals are desired. The strategy generated is 
one that satisfies the utility function: 

k N

after i J(i) i J(i) before i
,J

i 1 i k 1

min RE (A ,T ) RRCost(A ,T ) RE (A )
!

= = +

" #
+ +$ %

& '
( (  

where the minimum is taken over the sets {(A1, TJ(1), τ(1)), 
(A2, TJ(2), τ(2)), …, (AN, TJ(N), τ(3))} and all permutations τ 
of {1,2,…,N} and functions J:{1,2,…,N}→{1,2,…,M} (i.e. 
J is a set of non-distinct integers 1 through N). The utility 
function chooses the attribute-technique pairs that 
minimizes total RE and cost after k activities have been 
performed assuming k is arbitrary (i.e. the budget or 
schedule is unknown or may be cut at any time). 

Table 4 (reproduced from [Port et al, 2005]) shows the 
optimal strategy computed for the matrices in Tables 1-3.  

Attrib Tech RE 
Change 

Cost Benefit CB risk 
reduction 

cumulative 
cost 

None None None None None None 15700 0 
A13  T11  4050 10 4040 405 11650 10 
A7  T9 500 3 497 167 11150 13 
A11 T11  1500 10 1490 150 9650 23 
A14  T10 1200 20 1180 60 8450 43 
A3  T5 1620 70 1550 23.1 6830 113 
A6  T7 90 5 85 18 6740 118 
A5  T11  900 60 840 15 5840 178 
A8  T9  120 10 110 12 5720 188 
A4  T14  960 100 860 9.6 4760 288 
A2  T4 450 90 360 5 4310 378 
A1  T11  300 60 240 5 4010 438 
A9  T9  40 20 20 2 3970 458 
A10  T13 40 30 10 1.33 3930 488 

Table 4: The optimal strategy computed by the 
strategic method for the matrices from Tables 1-3.  
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3. STRATEGIC METHOD  ROBUSTNESS 

In this section, we carry out a systematic evaluation of 
strategies recommended by the strategic method, showing, 
for various budgets, the difference in risk reduction 
achieved by the strategic method compared to a number of 
benchmark strategies.  

The strategic method computes a strategy which is optimal 
if the various inputs to the strategic method are correct. 
Since it is very hard to know in practice exactly what the 
probability of failure or the consequent loss costs either 
before or after risk mitigation, the strategy recommended by 
the strategic method may turn out to be less than optimal. 
More importantly, the strategy recommended by the 
strategic method could turn out to be worse than other fixed 
reasonable strategies less sensitive to the accuracy of the 
input estimates. The basic question is, “Will the strategic 
method perform worse than other strategies if given 
inaccurate inputs?” 

In order to examine this question, we have carried out a 
number of experiments in which uncertainty/noise is 
introduced into the inputs to the strategic method, and then 
the risk reduction achieved by the recommended strategy 
compared with the risk reduction achieved by a fixed 
strategy. The benchmark strategies we use are: 

1. A random (or arbitrary choices of attribute and 
techniques and the order in which they are applied) 
strategy. 

2. The cheapest strategy. 

3. In subsequent experiments, a ‘great’ strategy. 

Figure 1, reproduced from [Port et al 2005] compares the 
risk reduction achieved using various different strategies. 
Risk reduction and cost are assessed according to the data in 
Tables 1-3. 

As expected theoretically, the RE profile for the random 
strategy is approximately linear and not very appealing. We 
can assess the effectiveness of a strategy by considering 
how well it reduces risk for a given cost as compared to a 
random strategy. Also as expected, the figure clearly shows 
that the strategic method strategy reduces overall RE as a 
function of cost better than all other strategies.  

3.1 Calculating the difference between strategies 

Recall that a strategy is a sequence of pairs <a,t> 
recommending application of technique t to attribute a. For 
each technique-attribute pair, we calculate risk reduction 
using the following values: 

Pbefore(a), the probability of loss for attribute a before 
application of any risk reduction. 

Sbefore(a), the cost consequent to the loss for attribute a. 

C(a,t), the cost of applying technique t to attribute a. 

Pafter(a,t), the probability of loss for attribute a after 
application of technique t. 

Safter(a), the cost consequent to the loss for attribute a. 

The risk reduction achievable from a strategy <a1,t1>, 
<a2,t2>, …, <an,tn> using some budget b is the risk 
reduction achieved by applying the techniques ti to the 
attributes ai in the order specified in the strategy up until the 
point where the budget has been exhausted.  

More precisely, we define the risk reduction achieved by 
applying the first k techniques of a strategy S=<a1,t1>, 
<a2,t2>, …, <an,tn> to be δREk(S) = ∑i=1..k Pbefore(ai) * 
Sbefore(ai) - Pafter(ai,ti)* Safter(ai) and the associated cost Ck(S) 
= ∑i=1..kC(ai,ti).  The risk reduction achieved at a budget b, 
denoted δRE(b,S), is value of δREk(S) for the largest k such 
that Ck(S)≤ b. In this paper, we are only interested in risk 
reduction, not in the total absolute risk exposure. 

In order to evaluate the effect of uncertainty on the inputs to 
the strategic method, we will conduct experiments in which 
we generate an optimal strategy using the strategic method 
using some known values for the input to the strategic 
method, but evaluate the risk reduction achieved by that 
strategy assuming values of the risk probability and cost 
matrices which are perturbed from those input values.  

The quantity we perturb in our experiments is the 
effectiveness of technique ti on attribute aj, defined to be 
ρij=(Pbefore-Pafter)/Pbefore. If ρij=0, then the technique in 

IV&V Assessment Strategies
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Figure 1: Performance of strategic method 
strategy versus baseline strategies. 
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completely ineffective. If ρij=1, then the technique 
completely mitigates the risk for attribute aj. If Sbefore=Safter 
(as it is in all our experiments here), then the risk reduction 
achieved from <ti,aj> is ρij*Pbefore(a)*Sbefore(a). Let our 
estimate of the effectiveness matrix be ρ0. We perturb the 
effectiveness matrix by multiplying it by Gaussian noise, 
replacing each entry ρ0

ij  with ρ0
ij*N(1,σ2), (If this would 

make ρij<0, we replace it with 0, if it would make ρij>1, we 
replace it with 1).  

The question of how to perturb a number representing an 
effectiveness in the range [0,1] is an important one, and 
there could be a concern that the way we have truncated the 
normal distribution could bias the results of our 
experiments. We repeated some of the experiments in 
Section 3. using different mechanisms for perturbing 
effectiveness. We tried two schemes: 1) ρij = ρ0

ij+N(0,σ2), 
with no cutoff, with the result that some of the perturbed 
effectiveness numbers may be less than 0 (a risk reduction 
technique is worse than useless), or greater than 1 (a risk 
reduction technique beyond our wildest dreams), and 2) 
using an accept-reject method, setting ρij = ρ0

ij+N(0,σ2), but 
rejecting and resampling if this puts ρij  outside the range 
[0,1]. Once accepted, ρij is guaranteed to be in the range 
[0,1]. The first scheme did not seem to affect the mean but 
did appear increase the variance of the experiment results. 
The second scheme did not appear to have an appreciable 
effect. Further work can be carried out in this area, but we 
believe that the mechanism we have chosen for adding noise 
in this paper does not appreciably bias the results. 

3.2 Strategic method versus random strategy 

We generate a random strategy S by applying techniques 
from T={T1,…,Tm} to attributes from A={A1, …, An} as 
follows: 

1. Initially set S to be the empty sequence. 

2. Randomly select an attribute a from A. Delete a 
from A. 

3. Randomly select a technique t from T such that t is 
applicable to a, i.e. Pafter(a,t)≠X and C(a,t)≠X. 

4. Add <a,t> to the end of S.  

5. Repeat from (2) above until A is empty. 

Using the above procedure, we generate a random strategy 
once per experiment, and call it Sfixed. 

We now calculate the difference in risk reduction achieved 
by Sfixed compared to the strategy recommended by the 
strategic method, Sopt, for various values of budget and 
various amounts of noise in the effectiveness matrix.  

We compare the random strategy to the strategic method 
strategy as follows: 

1. Pick fixed budget b є {50, 100, 150, 200, 250, 300, 
350, 400}. 

2. Pick noise level σ є {0, 0.05, 0.1, 0.15, 0.2, 0.3, 
0.4, 0.5, 0.7, 1.0} 

3. N (=1000) times: 

4. Add noise to effectiveness matrix: ∀i,j, 
ρij=||ρ0

ij+N(0, σ2)|| 

5. Evaluate %age difference between  Sopt and  Sfixed, 
Δ=(δRE(b, Sfixed)- δRE(b, Sopt))/ δRE(b, Sopt) 

Add a point to the plot with x coordinate σ, y coordinate the 
mean value of Δ, and if desired add error bars to that point 
to indicate the standard deviation in Δ. 

Figure 2 below shows the results of comparing the optimal 
with random strategies from two typical experiment runs. 
The quantity on the Y axis is the difference between the risk 
reduction achieved by Sfixed and Sopt expressed as a 
percentage of the risk reduction achieved by Sopt. For 
example, if Sopt reduces risk exposure by 130, and Sfixed 
reduces it by 75, then we plot (75-130)/130 = -42%. 
Negative numbers on the Y axis indicate that the optimal 
strategy reduces risk exposure more than (i.e. is better than) 
the random strategy. From our experiment we note the 
following: 

The optimal strategy is always much better than the random 
strategy regardless of the noise and budget. 

As the amount of noise in the effectiveness matrix increases, 
the difference between the optimal and random strategies 
decreases, but the standard deviation increases, i.e. the 
optimal strategy behaves more and more like a random 
strategy. 

Higher budgets result in less difference between the optimal 
and random strategies, i.e. as we spend more money, the 
random strategy becomes more optimal. That is, spending 
more money is always a way to mitigate risk.  
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Figure 2: results from a typical experiment run 
comparing optimal with a random strategy for 
various budgets and amounts of noise in 
effectiveness matrix.  Error bars indicate standard 
deviation for the budget=100 curve.  
3.3 Strategic method versus the cheapest strategy 

The strategic method strategy is typically much better than 
random strategies, but the random strategies are generally so 
poor that many strategies are not surprisingly better.  A 
more interesting benchmark strategy to use is the ‘cheapest’ 
strategy, which selects for each attribute the cheapest 
technique applicable to that attribute, and applies those 
attribute-technique pairs in order of increasing cost. We 
generate the cheapest strategy applying techniques from 
T={T1,…,Tm} to attributes from A={A1, …, An} as follows: 

1. Initially set S to be the empty sequence. 

2. Select the first attribute a from A. Delete a from A. 

3. Select the cheapest technique t* from T such that t* 
that is applicable to a, i.e. Pafter(a,t*)≠X and 
C(a,t*)≠X, and C(a,t*) ≤ C(a,t) for all techniques t. 

4. Add <a,t> to the end of S.  

5. Repeat from (2) above until A is empty. 

Sort the technique-attribute pairs from S in order of 
increasing cost.  

Figure 3 below shows the results of benchmarking the 
optimal against the cheapest strategy. Each point in the 
lower graph represents the difference between the optimal 
and cheapest strategy for a certain budget and noise level, 
averaged over 1000 runs. The upper graph in Figure 3 
shows the results of individual runs rather than averages. 
There are 100 points for each noise level, and the noise level 
ranges from 0.0 to 1.0 as before. In this experiment we note 
the following: 

1. Even for high levels of inaccuracy in the 
effectiveness matrix, the strategic method strategy 
is significantly better than the cheapest strategy. 

2. Again, the performance of the optimal strategy 
degrades as the amount of inaccuracy in the 
effectiveness matrix increases. 

3. Interestingly, from budget 100 onwards, as we 
increase the budget, the performance of the 
cheapest strategy gets worse compared to the 
optimal strategy, not better as was the case in 
Figure 1. 

For low budgets, the standard deviations become extremely 
large (much larger than in Figure 1) when there is a lot of 
inaccuracy in the effectiveness matrix – when we are adding 
noise from N(0,1) to the effectiveness matrix, the standard 
deviation of the %age difference between the risk reductions 
achieved by the optimal and cheapest strategies are 113, 97, 
300, 39, 30 at budget 50, 100, 150, 250, 350 respectively. 
This increase in standard deviation can be seen clearly in the 
rightmost graph of Figure 2. Based on these results in the 
presence of high noise, we would not expect the optimal 
strategy to necessarily perform better than the cheapest 
strategy for low budgets, even though on average it may 
perform significantly better for low budgets.  

3.4 Strategic method versus the Great Strategy 

A final challenge, which also demonstrates another 
interesting point, is to compare the optimal strategy against 
a strategy which is not just good, but great. We can choose 
such a great strategy by applying the strategic method itself. 

In this final set of experiments, we first apply the strategic 
method to generate an optimal strategy – in fact, the optimal 
strategy shown in Table 4, which is our ‘great’ fixed 
strategy Sfixed. We then perturb the loss potentials of Table 
1and calculate a new optimal strategy, Sopt. Comparing Sopt 
and Sfixed in this way provides us of a measure of how well 
the strategic method adjusts the strategy to changes in loss 
potential.  
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Figure 3: optimal versus cheapest strategy – 
points in the graph at the top are single samples, 
points in the graph below are single samples. 
We perturb each potential independently of the others, 
multiplying each loss potential by 0 (31% of the time), 1 
(38% of the time) and 1.5 (31% of the time). These 
possibilities correspond to scenarios where the loss potential 
for an attribute differs from the norm either because (0) an 
attribute risk is inapplicable or has already been completely 
mitigated,  (1) the loss potential is normal, or (2) the loss 
potential is elevated compared to normal.  

Figure 4 below shows the results of benchmarking the 
‘great’ strategy against the strategic method strategy chosen 
for a random perturbation of the loss potentials. We note the 
following: 

The optimal strategy is significantly better than the ‘great’ 
strategy. With no noise, the improvement is in the 0-15% 
range.  

As the amount of noise increases, the performance of the 
optimal strategy improves compared to the ‘great’ strategy. 

The larger the budget, the better the optimal strategy 
performs over the ‘great’ strategy. 

Figure 4: ‘great’ strategy against strategic method 
strategy for random perturbation of loss 
potentials. 

4. EXPERIMENTS WITH AN ALTERNATIVE 

OPTIMIZATION METHOD 

In parallel with development of the strategic method  
[Kazman, Port et al], a conceptually similar approach has 
been pursued in the form of the Defect Detection and 
Prevention (DDP) process [Feather&Cornford, 2003]. DDP 
has been used to help assess risks and plan their cost-
effective mitigation primarily for space mission 
technologies [Feather et al, 2005]. This section outlines 
DDP and its similarities to and differences from the 
strategic method , and describes some experimental 
evaluations of DDP-selected risk reductions. 

DDP, like the strategic method , treats risks as probabilistic 
events whose occurrence would detract from the attainment 
of attributes of interest, and treats techniques (with 
associated costs) as options to consider for reducing the 
likelihoods and/or severities (degree of impact) of risks. 
DDP can be used much like the strategic method to 
determine an “optimal” risk-reducing strategy – that is, for a 
given budget say, determine the selection of techniques that 
minimize overall risk while remaining within budget. 
Differences between the strategic method and DDP lie in 
some of the internal calculations of risk reduction, and the 
means by which each technique arrives at an “optimal” risk-
reducing strategy. 

DDP allows for the possibility that applying a technique 
may reduce several risks, and that a risk may be reduced by 
several of the techniques being applied. While the strategic 
method assumes one technique per risk, this can be 
accounted for by splitting the risk into sub-risks and adding 
dependencies.  In DDP the effect of a technique at reducing 
a risk as a number in the range 0 – 1, the proportion by 
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which the risk will be reduced. DDP’s rule for computing 
the combined effect of two techniques at reducing the same 
risk is to treat them as “filters” operating in “series”: e.g., if 
Technique A reduces a risk by 0.4 and Technique B reduces 
that same risk by 0.3, then applying both of them works as 
follows: suppose the initial risk value (likelihood x severity) 
= R; Technique A reduces the risk by 0.4, yielding a 
reduced risk value of (1 – 0.4) *R = 0.6R; Technique B then 
reduces that by 0.3, yielding a reduced risk value of (1 – 
0.3) * 0.6R = 0.42R. Note that the order of the techniques 
doesn’t matter; the other way around would change the risk 
R to 0.7R to 0.42R, the same end result. 

A fundamental difference between DDP and the strategic 
method is that DDP does not output a strategy. Rather it 
determines a set of attribute-technique pairs that optimize 
risk-reduction with respect to fixed budget. The order in 
which the attribute-technique pairs are executed is not 
considered. Fortunately for our sensitivity studies at present, 
order is not relevant.  

DDP treats determining an optimal risk-reduction selection 
as a classic optimization problem – for a given selection of 
techniques, DDP can be used to compute the cost (the sum 
total cost of that selection), and benefit (the sum of the 
attributes as reduced by the risks that detract from them, 
where those risks have been reduced by the selected 
techniques). By default, DDP treats the techniques as 
independent options, which means for N techniques, there 
are 2N ways of selecting from among them. DDP then uses 
either exhaustive search when the number of techniques is 
small (16 or so, depending on user patience!), or heuristic 
search to locate near-optimal solutions (the current DDP 
implementation uses simulated annealing for this purpose). 

In addition to the evaluations of the strategic method 
described in the other sections of this paper,  the first author 
(Richardson) had done some similar evaluations of a hybrid 
of strategic method  and DDP using a slightly smaller 
dataset comprising 12 risks and 7 techniques (in the 
interests of remaining within the space limits, we do not 
reproduce this dataset herein). This inspired the last author 
(Feather), the primary developer of DDP, to recreate those 
experiments as closely as possible in DDP. For the dataset 
in question, Richardson had used the approach of the 
strategic method  to compute a “Great” strategy – an 
ordering of the techniques, to be used in the following way: 
for the given budget, consider each technique in the 
ordering; if enough budget remains to pay for that 
technique, select it, decrease the remaining budget by that 
technique’s cost, and move to the next technique in the 
order; conversely, if insufficient budget remains to pay for 
that technique, then assume that the technique can be 
partially applied, in the amount of the fraction computed by 
dividing the budget remaining by the cost of the technique 
(and since this will use up all the remaining budget, there is 
no need to continue considering techniques). For example, if 
the technique in question is static analysis of code, it is 
reasonable to expect that applying static analysis to a 

portion of the code will reveal a portion of the errors 
detectable by static analysis. Thus for a given budget, 
Richardson’s approach yields some number of techniques to 
be applied in full, and possibly one to be applied 
fractionally (in some cases the last considered technique 
uses up the entire remaining budget, in which case no 
fractional applications result). Feather modified DDP’s 
exhaustive search for optimal risk reduction to also 
encompass partial (fractional) application, and recreated as 
closely as possible Richardson’s dataset within DDP. It was 
revealed that Richardson’s strategic method derived “Great” 
strategy, and DDP’s exhaustive search, always (for the 
budget levels considered in the experiments) computed the 
same selection of techniques. Feather then performed some 
preliminary evaluation experiments akin to those described 
in section 3.4 to compare the “Great” strategy, 
predetermined ahead of time, against an optimal (as located 
by DDP) strategy computed after perturbing loss potentials 
for the 12 risks. The same perturbations as described earlier 
were used: each risk is perturbed potential independently of 
the others, multiplying its loss potential by 0 (31% of the 
time), 1 (38% of the time) and 1.5 (31% of the time). 
Having determined the two strategies, gaussian noise was 
used to perturb the effectiveness matrix in each of the 
experimental runs, to mimic uncertainty in effectiveness 
numbers (again, as described earlier in the paper). The 
results from one set of these experiments are see in figure 4 

The same approach as used elsewhere in this paper is used 
to plot the mean percentage difference between the 
approaches being compared – here, between the 
predetermined and post-risk-perturbation-determined 
strategies. This is done for a several budgets (the different 
colors of points) and several noise levels (the horizontal 
axis). The plot reveals that the post-risk-perturbation-
strategy is, on average, superior to the predetermined one. 
This is as we would hope: it indicates that taking into 
account additional information about relative prevalence of 
risks indeed improves our ability to select a better strategy. 
We also see the phenomenon of increasing budgets 
diminishing the differences – as more and more risk 
reduction techniques can simultaneously be afforded, 
selection from among them becomes less critical. Finally, it 
seems that in this case, increasing the noise level somewhat 
diminishes the difference between the two strategies. 

A separate experiment that disallowed use of partial 
“fractional” techniques showed a greater leaning in favor of 
DDP, perhaps because the budget thresholds (at intervals of 
10) had an unfortunate interaction with one of the 
techniques (costing 5), leading to “wastage” of budget when 
naively following the strategic method  of determination. 

These DDP experiments are just preliminary, so we do not 
yet draw any strong conclusions from them. The do, 
however, indicate that the evaluation approaches described 
in this paper can yield insights when applied to alternate 
risk-reduction models, such as “standard” DDP, and DDP  
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Figure 4: ‘great’ strategy against DDP strategy for 
random perturbation of loss potentials. 
augmented with Richardson’s concept of partial application 
of techniques to consume remaining budget.  

5. CONCLUSIONS 

The strategic method calculates risk reduction strategies 
specific for a project, tailored to the amounts of risk and 
possible risk reduction in that project. In fact \cite{Port et al, 
2005}, the computed strategies are optimal as long as the 
inputs to the strategic method do accurately reflect the 
amounts of risk and possible risk reduction in that project.  

In practice, accurately estimating quantities such as 
probability of failure, cost consequence of failure, and 
effectiveness of risk mitigations is very hard.  

In this paper, we examined the effect that inaccuracies in the 
inputs to the strategic method have on the risk reduction 
achieved by the strategic method strategy compared to 
various baseline strategies.  

The strategic method strategy generally performs much 
better than random strategies, and that improvement can 
increase as our assessment of the effectiveness of available 
mitigations becomes more inaccurate. We speculate that the 
reason for the latter is that the strategic method strategy is in 
some sense ‘robust’ in the presence of noise, since it tackles 
the most important risk attributes early, even if the amount 
of mitigation achieved by a mitigation technique may differ 
significantly from our expectations. 

The strategic method strategy performs much better than the 
cheapest strategy, although the improvement in performance 
decreases as our assessment of the effectiveness of available 
mitigations becomes more inaccurate. For some values of 
budget and injected noise, the standard deviation of the 
measured improvement is extremely large. For those values, 
we would not necessarily expect the optimal strategy to 
perform better than the cheapest strategy, even though it 
will do so on average. 

When we randomly perturb the loss potentials input to the 
strategic method, the strategic method strategy – which is 
tailored to those values of loss potential – performs better 
than a fixed ‘great’ strategy (the strategy of Table 4). The 
size of the improvement increases as our assessment of the 
effectiveness of available mitigations becomes more 
inaccurate.  

Using the strategic method to compute optimal strategies 
does seem to result in worthwhile – sometimes very large – 
improvements in risk reduction, even when our assessment 
of the effectiveness of available mitigations is inaccurate. 

Our results have been cross-validated by considering the 
alternative risk-reduction versus cost optimization method 
DDP.  
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9. APPENDIX 

The attribute and technique descriptions for the data 
indicated in the tables are:  

A1: Robustness/Independent redundancy (No Single 
Failure Point, Priority Inversion) 

A2: Robustness/Independent redundancy (No Single 
Failure Point, Requirement Consistency, Completeness) 

A3: Robustness/Independent redundancy (No Single 
Failure Point, Code Quality) 

A4: Stability of Performance (Timing, Message queue 
over flow) 

A5: Real time performance (Don’t skip the data flame) 

A6: Development Schedule  

A7: Cost  

A8: Portability/ Replaceability, Adaptability (to Hardware 
or Driver)   

A9: Maintainability/Changeability 

A10: Scalability (Capability of adding application code) 

A11: Testability 

A12: Understandability (access to code) 

A13: Resource Utilization (How much resource used 
when maximum process is on using past system 

A14: Vender Support (Response time) 
 

T1: Test Suites  T8: Custom Method 
T2: Analysis Using 
Model  

T9: Interview Vendor 

T3: API Test  T10: Investigation of past data 
T4: Model Checking  T11: Test on Emulator 
T5: Code Review 
Lessons Learned 

T12: Best Guess 

T6: Static Analysis of 
code 

T13: Benchmark test 

T7: Estimation T14: Simulation 


